1.

The maximum value of the function `f(x)=((1+x)^(0. 6))/(1+x^(0. 6))`in the interval `[0,1]`is`2^(0. 4)`(b) `2^(-0. 4)`1(d) `2^(0. 6)`A. `2^(0.4)`B. `2^(-0.4)`C. 1D. `2^(0.6)`

Answer» Correct Answer - 3
`f(x) =0.6(1+x)^(0.4)(1+x^(0.6))-0.6x^(0.4)(1+x)^(0.4)/(1+x^(0.6))^(2)`
`=0.6(1+x^(0.6))-x^(0.4(1+x^(1)))/(1+x^(0.6^(2))(1+x^(0.4)))`
`=0.6 (x^(0.4)-1)/(1+x^(0.6^(2)))(1+x)^(0.4)x^(0.4)lt0 forallx in (0,1)`
Hence f(X) is decreasing thus
`f(x)_(max) =f(0)=1`


Discussion

No Comment Found