1.

The most general solution of the equation sec2 x = \(\sqrt{2}\) (1 – tan2 x ) are given by (a) nπ ± \(\frac{π}{4}\)(b)  2nπ ± \(\frac{π}{4}\) (c)  nπ ± \(\frac{π}{8}\)(d) None of these

Answer»

Answer : (c)  nπ ± \(\frac{\pi}{8}\)

 sec2 x = \(\sqrt{2}\)  (1 - tan2 α) 

⇒ tan2 α  + 1 = \(\sqrt{2}\) (1 – tan2 α )  

⇒ tan2 α (1 + \(\sqrt{2}\) ) = \(\sqrt{2}\) – 1 

⇒ tan2 α  = \(\frac{\sqrt{2} -1}{\sqrt{2} +1}\) = \(\frac{(\sqrt{2} -1)^2}{(\sqrt{2}+1)(\sqrt{2}-1)}\)  = \((\sqrt{2}-1)^2\) = \({tan}^2\,\frac{\pi}{8}\) 

∴ tan α = tan \(\big(± \frac{\pi}{8}\big)\) 

α = nπ ± \(\frac{\pi}{8}\)



Discussion

No Comment Found