1.

The new matrix after applying the elementary operation R2→2R2+3R1 on the matrix A=\(\begin{bmatrix}2&5&4\\5&2&6\\7&2&1\end{bmatrix}\) is _____________(a) \(\begin{bmatrix}2&5&4\\16&19&24\\7&2&1\end{bmatrix}\)(b) \(\begin{bmatrix}2&5&4\\19&19&24\\7&2&1\end{bmatrix}\)(c) \(\begin{bmatrix}2&-5&4\\16&19&24\\7&2&1\end{bmatrix}\)(d) \(\begin{bmatrix}1&5&4\\16&19&24\\7&2&1\end{bmatrix}\)The question was asked in semester exam.Question is from Elementary Operation (Transformation) of a Matrix topic in division Matrices of Mathematics – Class 12

Answer»

Right option is (a) \(\begin{bmatrix}2&5&4\\16&19&24\\7&2&1\end{bmatrix}\)

The best EXPLANATION: Consider A=\(\begin{bmatrix}2&5&4\\5&2&6\\7&2&1\end{bmatrix}\), after APPLYING R2→2R2+3R1

⇒\(\begin{bmatrix}2&5&4\\2(5)+3(2)&2(2)+3(5)&2(6)+3(4)\\7&2&1\end{bmatrix}\)=\(\begin{bmatrix}2&5&4\\16&19&24\\7&2&1\end{bmatrix}\).



Discussion

No Comment Found

Related InterviewSolutions