

InterviewSolution
1. |
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term. |
Answer» Given, an = 2n + 7 We can find first five terms of this sequence by putting values of n from 1 to 5. When n = 1 : a1 = 2(1) + 7 ⇒ a1 = 2 + 7 ⇒ a1 = 9 When n = 2 : a2 = 2(2) + 7 ⇒ a2 = 4 + 7 ⇒ a2 = 11 When n = 3 : a3 = 2(3) + 7 ⇒ a3 = 6 + 7 ⇒ a3 = 13 When n = 4 : a4 = 2(4) + 7 ⇒ a4 = 8 + 7 ⇒ a4 = 15 When n = 5 : a5 = 2(5) + 7 ⇒ a5 = 10 + 7 ⇒ a5 = 17 ∴ First five terms of the sequence are 9, 11, 13, 15, 17. A.P is known for Arithmetic Progression whose common difference = an – an-1 Where n > 0 a1 = 9, a2 = 11, a3 = 13, a4 = 15, a5 = 17 Now, a2 – a1 = 11 – 9 = 2 a3 – a2 = 13 – 11 = 2 a4 – a3 = 15 – 13 = 2 a5 – a4 = 17 – 15 = 2 As, a2 – a1 = a3 – a2 = a4 – a3 = a5 – a4 The given sequence is A.P Common difference, d = a2 – a1 = 2 To find the seventh term of A.P, firstly find an We know, an = a + (n-1)d Where a is first term or a1 and d is common difference ∴ an = 3 + (n-1) 2 ⇒ an = 3 + 2n – 2 ⇒ an = 2n + 1 When n = 7 : a7 = 2(7) + 1 ⇒ a7 = 14 + 1 ⇒ a7 = 15 Hence, The 7th term of A.P. is 15 |
|