InterviewSolution
Saved Bookmarks
| 1. |
The number of real solution of equation `Sin(e^x) = 5^x + 5^(-x)` is : |
|
Answer» `sin(e^x) = 5^x+5^(-x)` `sin(e^x) :` Maximum value of `sin(e^x)` can be `1` and minimum value can be `-1`. `5^x+5^-x = 5^x+1/5^x` Now, `5^x` is always greater than `0` which means, which means `5^x+1/5^x` will always be greater than or equall to `2`. so, minimum value of `5^x+5^-x` will be `2`. So, we can see that in given equation, maximum value of left side is `1` and minimum value of right side is `2`. It means there is no solution possible that will satisfy the given equation. |
|