

InterviewSolution
Saved Bookmarks
1. |
The number of solutions of `sqrt(3x^(2)+x+5)=x-3` is(A) `0`(B) `1`(C) `2`(D) `4`A. `0`B. `1`C. `2`D. `4` |
Answer» Correct Answer - A `(a)` We have `sqrt(3x^(2)+x+5)=x-3` We must have `3x^(2)+x+5 ge 0` and `x-3 ge 0` or `x ge 3` `sqrt(3x^(2)+x+3)=x-3` ……….`(i)` Squaring both sides of `(i)`, we get `3x^(2)+x+5=x^(2)-6x+9` `implies 2x^(2)+7x-4=0` `implies (2x-1)(x+4)=0` `implies x=1//2,-4` These values does not satisfy the inequality `x ge 3`. Thus, `(i)` has no solution. |
|