Saved Bookmarks
| 1. |
The number of triple satisfying `sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi` is |
|
Answer» We know that `sin^(-1)xle(pi)/(2) sin^(-1)zle(pi)/(2) and cos^(-1) y le pi` `therefore sin^(-1)x+cos^(-1)y+sin^(-1)zle2pi` `rarr sub^(-1)x=(pi)/(2) cos^(-1)y=pi and sin^(-1) =(pi)/(2)` `rarr x=1 , y=-1 =pi and sin^(-1) z=(pi)/(2)` `rarr x =1 ,y =-1 and z=1` |
|