1.

The number of values of x in the interval [0, 5π] satisfying the equation 3 sin2 x – 7sinx + 2 = 0 is(a) 0 (b) 5(c) 6 (d) 10

Answer»

Answer : (c) 6 

3 sinx – 7 sin x + 2 = 0 

⇒ (3 sin x – 1) (sin x – 2) = 0 

⇒ (3 sin x – 1) = 0 or (sin x – 2) = 0 

∵ sin x = 2 is inadmissible, therefore, sin x = \(\frac{1}{3}\)

Since, sin x = sin α where sin α = \(\frac{1}{3}\) , so α lies in the 1st quadrant 

⇒ x = nπ + (–1)n α, n∈I, where 0 < α < π/2 

Since x lies in the interval [0, 5π], so we have one value of x corresponding to each of the values 0, 1, 2, 3, 4, 5 or n. 

∴ The number of values of x in the interval [0, 5π] is 6.



Discussion

No Comment Found