InterviewSolution
Saved Bookmarks
| 1. |
The position `x` of a particle with respect to time `t` along the x-axis is given by `x=9t^(2)-t^(3)` where `x` is in meter and `t` in second. What will be the position of this particle when it achieves maximum speed along the positive `x` directionA. 24mB. 32mC. 54mD. 81m |
|
Answer» Correct Answer - C `x=9t^(2)-t^(3) therefore v=18t-3t^(2)` `rArr=(dv)/(dt)=18-6t` `rArr(dv)/(dt)=18-6t` for maximum speed `(dv)/(dt)=0`, and `(d^(2)v)/(dt^(2))=` negative so `18-6t=0 rArrt=3s` `x_(t=3s)=9(3)^(2)-(3)^(3)=81-27=54m` |
|