 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | The sides of a triangle are 35 cm, 54 cm and 61 cm respectively. Find the length of its longest altitude. | 
| Answer» Let a = 35 cm, b = 54 cm and c = 61 cm. Then, `s=(1)/(2)(a+b+c)=(1)/(2)(35+54+61)cm=75cm`. ` therefore" "(s-a)=(75-35)cm = 40 cm,(s-b)=(75-54)cm = 21cm and (s-c)=(75-61)cm = 14 cm`. `therefore" ""area of the triangle"= sqrt(s(s-a)(s-b)(s-c))cm^(2)` `= sqrt(75 xx 40 xx 21 xx 14)cm^(2)` `= sqrt(15 xx 15 xx 14 xx 14 xx 4 xx 5)cm^(2)` `=(15 xx 14 xx 2) sqrt(5)cm^(2) = 420 sqrt(5) cm^(2)`. The longest altitude will be on smallest base. Let the longest altitude be h cm. Then, base = 35 cm and height = h cm. `therefore" "(1)/(2) xx 35 xx h = 420 sqrt(5) rArr h = ((2 xx 420 xx sqrt(5))/(35))cm = 24 sqrt(5)` cm. Hence, the longest altitude is `24 sqrt(5)` cm. | |