

InterviewSolution
Saved Bookmarks
1. |
The solution of `sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|)` isA. `n pi pm 1, n pi, n in Z`B. `n pi+1, n pi, n in Z`C. `n pi-1, n pi, n in Z`D. `2n pi+1, n pi, n in Z` |
Answer» Correct Answer - A Solution of `y=sqrt(y)` is y = 1 and y = 0 `rArr sin^(-1)|sin x|=0` or 1 `sin^(-1)|sin x|` is periodic with period `pi` In `(0, pi)`, if `sin^(-1)|sin x|=1, x = 1` or `x = pi -1` `therefore` General solution is `x = n pi 1, n in Z` If `sin^(-1)|sin x| =0 rArr x = n pi, n in Z` |
|