

InterviewSolution
Saved Bookmarks
1. |
The solution of `sin^(-1)x-sin^(-1)2x=pm(pi)/(3)` isA. `pm(1)/(3)`B. `pm(1)/(4)`C. `pm(sqrt(3))/(2)`D. `pm(1)/(2)` |
Answer» Correct Answer - D `sin^(-1)x-sin^(-1)2x=pm (pi)/(3)` `rArr sin^(-1)x-sin^(-1)(pm(sqrt(3))/(2))=sin^(-1)2x` `rArr sin^(-1)[x sqrt(1-(3)/(4))-(pm (sqrt(3))/(2)sqrt(1-x^(2)))]=sin^(-1)2x` `rArr (x)/(2)-(pm(sqrt(3))/(2)sqrt(1-x^(2)))=2x` `rArr -(pm sqrt(3)sqrt(1-x^(2)))=3x` On squaring both sides, we get `3(1-x^(2))=9x^(2)` `rArr 4x^(2)=1` `rArr x = pm (1)/(2)` |
|