InterviewSolution
 Saved Bookmarks
    				| 1. | 
                                    The solution set of equation `(x+2)^(2)+[x-2]^(2)=(x-2)^(2)+[x+2]^(2)`, where [.] represents the greatest integer function, isA. NB. ZC. QD. R | 
                            
| 
                                   
Answer» Correct Answer - B We have, `[x+n]=[x]+n` where `n in Z` and `x in R`. `:. (x+2)^(2)+[x-2]^(2)=(x-2)^(2)+[x+2]^(2)` `implies (x+2)^(2)-(x-2)^(2)=[x+2]^(2)-[x-2]^(2)` `implies(x+2)^(2)-{(x+2)-4}^(2)=[x+2]^(2)-[(x+2)-4]^(2)` `implies (x+2)^(2)-{(x+2)-4}^(2)=[x+2]^(2)-{[x+2]-4}^(2)` `implies 8(x+2)=8[x+2]` `implies(x+2)-[x+2]=0` `implies {x+2}=0` , where{x} denotes the fractional part of x `implies x+2 in Z implies x in Z` Hence, the solution set of the given equation is the set ofintegers.  | 
                            |