InterviewSolution
| 1. |
The sum of first three terms of a GP is \(\frac{39}{10}\) and their product is 1. Find the common ratio and these three terms. |
|
Answer» Let the first three terms of G.P. be \(\frac{a}{r}\), a, ar It is given that \(\frac{a}{r} \times a \times ar = 1\) \(\Rightarrow\) a3 = 1 ⇒ a = 1 And \(\frac{a}{r} + a + ar = \frac{39}{10}\) \(\Rightarrow\) a\(\left(\frac{1}{r} + 1 + r\right)\) = \(\frac{39}{10}\) \(\Rightarrow\)\(\left(\frac{1}{r} + 1 + r\right)\) = \(\frac{39}{10}\) .....(a=1) \(\Rightarrow\) \(\left(\frac{1}{r} + r\right)\) = \(\frac{39}{10}\) - 1 = \(\frac{29}{10}\) ⇒ 10(1 + r2 ) = 29r ⇒ 10r2 - 29r + 10 = 0 ⇒ 10r2 - 25r - 4r + 10 = 0 ⇒ 5r(2r - 5) - 2(2r - 5) = 0 ⇒ (2r - 5)(5r - 2) = 0 ⇒ r = \(\frac{5}{2}, \frac{2}{5}\) Therefore the first three terms are: (i) if r = \(\frac{5}{2}\) then \(\frac{2}{5}, 1 , \frac{5}{2}\) (ii) if r = \(\frac{2}{5}\)then \(\frac{5}{2},1,\frac{2}{5}\) Hence, the Common ratio r = \(\frac{5}{2},\frac{2}{5}\) and the first three terms are: (i) if r = \(\frac{5}{2}\) then \(\frac{2}{5},1,\frac{5}{2}\) (ii) If r = \(\frac{2}{5}\) then \(\frac{5}{2},1,\frac{2}{5}\) |
|