

InterviewSolution
1. |
The sum of three numbers in A.P. is 12 and the sum of their cubes is 408. Find the numbers. |
Answer» Let the three numbers are in AP = a, a + d, a + 2d According to the question, The sum of three terms = 12 ⇒ a + (a + d) + (a + 2d) = 12 ⇒ 3a + 3d = 12 ⇒ a + d = 4 ⇒ a = 4 – d …(i) and the sum of their cubes = 408 ⇒ a3 + (a + d)3 + (a + 2d)3 = 408 ⇒ (4 – d)3 + (4)3 + ( 4 – d + 2d)3 = 408 [from(i)] ⇒ (4 – d)3 + (4)3 + ( 4 + d)3 = 408 ⇒ 64 – d3 + 12d2 – 48d + 64 + 64 + d3 + 12d2 + 48d = 408 ⇒ 192 + 24d2 = 408 ⇒ 24d2 = 408 – 192 ⇒ 24d2 = 216 ⇒ d2 = 9 ⇒ d = √9 ⇒ d = ±3 Now, if d = 3, then a = 4 – 3 = 1 and if d = – 3, then a = 4 – ( – 3) = 4 + 3 = 7 So, the numbers are → if a = 1 and d = 3 1, 4, 7 and if a = 7 and d = – 3 7, 4, 1 |
|