1.

The surface area of a cube is increasing at the rate of `2 cm^(2)//sec`. When its edge is 90 cm, the volume is increasing at the rate ofA. `1620 cm^(3)//sec`B. `810 cm^(3)//sec`C. `405 cm^(3)//sec`D. `45 cm^(3)//sec`

Answer» Correct Answer - D
Let at any time t the length of each edge of the cube be x cm. Let S denote the surface area and V the volume of the cube. Then,
`S=6x^(2) and V=x^(3)`
`implies (dS)/(dt)=12x (dx)/(dt) and (dV)/(dt)=3x^(2)(dx)/(dt)`
`implies 2=12 xx 90(dx)/(dt) and (dV)/(dt)=3xx90^(2)xx(dx)/(dt) [because x=90 cm and (dS)/(dt)=2]`
`implies 90xx(dx)/(dt)=(1)/(6) and (dV)/(dt)=3xx90xx(90xx(dx)/(dt))`
`implies (dV)/(dt)=3xx90xx(1)/(6) cm^(3)//sec=45 cm^(3)//sec`


Discussion

No Comment Found

Related InterviewSolutions