1.

The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.

Answer»

Let’s consider the first term as a and the common difference as d.

Given,

a3 = 7 …. (1) and,

a7 = 3a3 + 2   …. (2)

So, using (1) in (2), we get,

a= 3(7) + 2 = 21 + 2 = 23  …. (3)

Also, we know that

an = a +(n – 1)d

So, the 3th term (for n = 3),

a3 = a + (3 – 1)d

⟹ 7 = a + 2d   (Using 1)

⟹ a = 7 – 2d     …. (4)

Similarly, for the 7th term (n = 7),

a7 = a + (7 – 1) d 24 = a + 6d = 23  (Using 3)

a = 23 – 6d  …. (5)

Subtracting (4) from (5), we get,

a – a = (23 – 6d) – (7 – 2d)

⟹ 0 = 23 – 6d – 7 + 2d

⟹ 0 = 16 – 4d

⟹ 4d = 16

⟹ d = 4

Now, to find a, we substitute the value of d in  (4), a =7 – 2(4)

⟹ a = 7 – 8

a = -1

Hence, for the A.P. a = -1 and d = 4

For finding the sum, we know that

Sn = \(\frac{n}{2}\)[2a + (n − 1)d] and n = 20 (given)

S20  = \(\frac{20}{2}\)[2(−1) + (20 − 1)(4)]

= (10)[-2 + (19)(4)]

= (10)[-2 + 76]

= (10)[74]

= 740

Hence, the sum of first 20 terms for the given A.P. is 740



Discussion

No Comment Found