InterviewSolution
Saved Bookmarks
| 1. |
The triple product of ` (vec d + vec a) .[ vec a xx ( vec b xx ( vec c xx vec d ))]` is equal to: |
|
Answer» `(vecd+veca).[vecaxx(vecbxx(veccxxvecd))]` `=(vecd+veca).[vecaxx((vecb.vecd)vecc-(vecb.vecc)vecd)]` `=(vecd+veca).[(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)]` `=(vecb.vecd)([vecd.veca.vecc + veca.veca.vecc]) - (vecb.vecc)([veca.vecd.vecd+veca.veca.vecd])` We know, if in a scalar triple product, two same values are there, value of products is `0`. So, our expression becomes, `=(vecb.vecd)([vecd.veca.vecc+0])-(vecb.vecc)([0-0])` `=(vecb.vecd)[vecd.veca.vecc]` |
|