Saved Bookmarks
| 1. |
The two curves `x^3-3xy^2+2=0` and `3x^2y-y^3-2=0`A. `pi/4`B. `pi/3`C. `pi/2`D. `pi/6` |
|
Answer» Correct Answer - C Equation of two curves are given by `x^(3)-3xy^(2)+2=0` and `3x^(2)y-y^(3)-2=0` [on differentiating w.r.t. x] `rArr 3x^(2)-3[x.2y(dy)/(dx)+y^(2).1]+0=0` and `3y^(2)(dy)/(dx) = 3x^(2)(dy)/(dx)+6xy` `rArr (dy)/(dx)=(3x^(2)-3y^(2))/(6xy)` and `(dy)/(dx)=(6xy)/(3y^(2)-3x^(2))` `rArr (dy)/(dx)= (3(x^(2))-y^(2))/(6xy)` and `(dy)/(dx) = (-6xy)/(3(x^(2)-y^(2))` `rArr m_(1)=(x^(2)-y^(2))/(2xy)` and `m_(1)=(x^(2)-y^(2))/(2xy)` and `m_(2)=(-2xy)/(x^(2)-y^(2))` `therefore m_(1)m_(2)=(x^(2)-y^(2))/(2xy) -(2xy)/(x^(2)-y^(2))=-1` Hence, both the curves are intersecting at right angles i.e., making `pi/2` with each other. |
|