InterviewSolution
Saved Bookmarks
| 1. |
The value of x satisfying log2(3x – 2) = \(\text{log}_{\frac{1}{2}}\) x is(a) – 1 (b) − \(\frac{1}{3}\)(c) \(\frac{1}{3}\)(d) 1 |
|
Answer» (d) 1 Given, log2(3x-2) = \(\text{log}_{\frac{1}{2}}\)x ⇒ log2(3x-2) = log2-1 x ⇒ log2(3x-2) = \(\frac{1}{-1}\) log2 x \(\bigg[\)Using logan x = \(\frac{1}{n}\) loga x\(\bigg]\) ⇒ log2 (3x – 2) = (– 1) log2 x = log2 x– 1 [Using n loga x = loga xn] ⇒ (3x – 2) = x– 1 = \(\frac{1}{x}\) ⇒ 3x2 – 2x – 1 = 0 ⇒ (3x + 1) (x – 1) = 0 ⇒ \(-\frac{1}{3}\) x = or 1 ⇒ x = 1, since log2 (3x – 2) is not defined when x = − \(\frac{1}{3}\). |
|