1.

The vapour pressures of pure liquids A and B are 400 mm Hg and 650 mm Hg respectively at 330 K. Find the composition of liquid and vapour if total vapour pressure of solution is 600 mm Hg.

Answer»

Given : 

\(P_A^0\)= 400 mm Hg; 

\(P_B^0\) = 650 mm Hg, 

PT = 600 mm Hg, 

T = 330 K; 

xA = ? 

xB = ?, 

y1 = ? 

y2 = ?

(x is mole fraction in liquid phase while y is mole fraction in vapour phase.)

PT = (\(P_A^0\) \(P_B^0\))xB\(P_A^0\)

600 = (650 – 400)xB + 400

= 250xB + 400

∴ xB\(\frac{600-400}{250}\) = 0.8

∵ xA + xB = 1

∴ xA = 1 – xB = 1 – 0.8 = 0.2

The composition of A and B in liquid mixture is, xA = 0.2 and xB = 0.8.

If P1 and P2 are vapour pressures (or partial pressures) of A and B in vapour phase then by Raoult’s law,

P1 = xA × \(P_A^0\) = 0.2 × 400 = 80 mm Hg

P2 = xA ×\(P_B^0\) = 0.8 × 650 = 520 mm Hg

If y1 and y2 are mole fractions of A and B respectively in vapour phase then, 

By Dalton’s law,

P1 = y1PT

∴ y1\(\frac{P_1}{P_T}\) = \(\frac{80}{600}\) = 0.1333

P2 = y2PT

∴ y2\(\frac{P_2}{P_T}\) = \(\frac{520}{600}\) = 0.8667

(or y2 = 1 – y1 = 1 – 0.1333 = 0.8667)

∴ Composition of liquid : 

xA = 0.2 and xB = 0.8

∴ Composition of vapour :

yA = 0.1333 and yB = 0.8667



Discussion

No Comment Found

Related InterviewSolutions