1.

The velocity of a particle is given by `v=v_(0) sin omegat`, where `v_(0)` is constant and `omega=2pi//T`. Find the average velocity in time interval `t=0 `to `t=T//2.`

Answer» `v=v_(0) sin omega t`
`barv=(overset(T//2)underset(0)intvdt sin(omegat)dt)/(overset(T//2)underset(0)int dt)`
`(v_(0)(|-cos(omegat)|_(0)^(T//2))/omega)/(|t|_(0)^(T//2)=(T/2-0))`
`=(2v_(0))/(omegaT)[{-cos((omegaT)/2)}-{-cos(0)}]`
`=(2v_(0))/(2pi)(-cospi+1)`
`=v_(0)/pi{-(-1)+1} (cos pi=cos 180^(@)=-1)`
`=2/piv_(0)`


Discussion

No Comment Found

Related InterviewSolutions