1.

The volume of a right circular cone is`9856 cm^3`. If the diameter of the base is 28 cm,Find (i) height of the cone (ii) slant height of the cone (iii) curved surface area of the cone

Answer» (i)Here, Volume of cone, `V = 9856cm^3`
Diameter of cone, `d = 28cm`
So, radius of cone, `r = d/2 = 28/2 = 14cm`
We know, volume of a cone, `V = 1/3pir^2h`
So, `9856 = 1/3**22/7**14**14**h`
`h = (9856**3)/(22**28) = (64**3)/4 = 48cm`
So, height of cone, `h = 48cm`

(ii)Now, Slant height, `l = sqrt(h^2+r^2)`
`l = sqrt(48^2+14^2) = sqrt(2^2**24^2+2^2**7^2`
`l = 2sqrt(24^2+7^2) = 2sqrt(576+49) = 2**25 = 50cm`

(iii) Curved surface area of a cone, `A = pirl`
So, `A = 22/7**14**50 = 2200cm^2`


Discussion

No Comment Found

Related InterviewSolutions