InterviewSolution
Saved Bookmarks
| 1. |
The volume of a right circular cone is`9856 cm^3`. If the diameter of the base is 28 cm,Find (i) height of the cone (ii) slant height of the cone (iii) curved surface area of the cone |
|
Answer» (i)Here, Volume of cone, `V = 9856cm^3` Diameter of cone, `d = 28cm` So, radius of cone, `r = d/2 = 28/2 = 14cm` We know, volume of a cone, `V = 1/3pir^2h` So, `9856 = 1/3**22/7**14**14**h` `h = (9856**3)/(22**28) = (64**3)/4 = 48cm` So, height of cone, `h = 48cm` (ii)Now, Slant height, `l = sqrt(h^2+r^2)` `l = sqrt(48^2+14^2) = sqrt(2^2**24^2+2^2**7^2` `l = 2sqrt(24^2+7^2) = 2sqrt(576+49) = 2**25 = 50cm` (iii) Curved surface area of a cone, `A = pirl` So, `A = 22/7**14**50 = 2200cm^2` |
|