InterviewSolution
| 1. |
The volume of right circular cone is 9856cm³.If the radius of base 14 cm.find the----->1. height of cone2.Slant height |
|
Answer»
The volume of right circular cone is 9856 cm³. If the radius of base 14 cm. Find the :Height of Cone Slant Height
The volume of right circular cone = 9856 cm³ Radius of Base = 14 cm
Height of Cone Slant Height
Height of Cone = 48 cm Slant Height of Cone = 50 cm
♣ First Let's Find Height of ConeVolume of Right Circular Cone = 9856 cm³ ⇒ 1/3πr²h = 9856 cm³ ⇒ 1/3 × π × r² × h = 9856 cm³ ⇒ 1/3 × 22/7 × r² × h = 9856 cm³ (∵ π = 22/7) ⇒ 22 × 1/7 × 3 × r² × h = 9856 cm³ ⇒ 22/21 × r² × h = 9856 cm³ ⇒ 22/21 × r² × h = 9856 cm³ (Given r = 14 cm) ⇒ 22/21 × (14 cm)² × h = 9856 cm³ ⇒ 22/21 × 196 cm² × h = 9856 cm³ ⇒ (22 × 196)/21 cm² × h = 9856 cm³ ⇒ 4312/21 cm² × h = 9856 cm³ ⇒ 616/3 cm² × h = 9856 cm³ Multiplying both sides by 3⇒ 3 × (616/3) cm² × h = 3 × 9856 cm³ ⇒ 616 cm² × h = 29568 cm³ Dividing both sides by 616 cm²⇒ (616 cm² × h)/616 cm² = 29568 cm³/616 cm² ⇒ h = 29568/616 cm ⇒ h = 48 cm ∴ Height of Cone = 48 cm _______________________________________ ♣ Now Let's Find Slant HeightSlant Height = √(r² + h²) ⇒ Slant Height = √[(14 cm)² + h²] (Given r = 14 cm) ⇒ Slant Height = √[196 cm² + h²] ⇒ Slant Height = √[196 cm² + (48 cm)²] (We FOUND : h = 48 cm) ⇒ Slant Height = √[196 cm² + 2304 cm²] ⇒ Slant Height = √[2500 cm²] ⇒ Slant Height = √[50² cm²] ⇒ Slant Height = √[50²] cm ⇒ Slant Height = 50 cm ∴ Slant Height of Cone = 50 cm ___________________________ Request :If there is any difficulty viewing this answer in APP, Kindly see this answer at Web (https://brainly.in/) for CLEAR steps and understanding. |
|