InterviewSolution
Saved Bookmarks
| 1. |
The volume of the tetrahedron whose vertices are the points with positon vectors `hati-6hatj+10hatk, -hati-3hatj+7hatk, 5hati-hatj+hatk` and `7hati-4hatj+7hatk` is 11 cubic units if the value of `lamda` is |
|
Answer» Correct Answer - 7 Let the vertices be, A ,B , C , D and O be the origin. `vecOA=hati -6hatj+10hatk,vecOB=hati-3hatj +7hatk`, `vecOC= -5hati-hatj+lambdahatk,vecOD=7hati -4hatj+7hatk` `vecAB=vecOB-vecOA= -2hati+3hatj-3hatk` `vecAC=vecOC-vecOA= -4hati + 5hatj + (lambda-10)hatk` `vecAC=vecOC -vecOA=4hati+5hatj+(lamda-10)hatk` `vecAD=vecOD-vecOA = 6hati +2hatj-3hatk` volume of tetrahedron `1/6[vecAB vecAC vecAD]=1/6|{:(-2,3,-3),(4,5,lamda-10),(6,2,-3):}|` `1/6 {-2(-15-2lambda+20)-3(-12-6lambda+60)-3(8-30)}` `1/6 {4lambda- 10 -144 + 18 lambda+66}` `= 1/6 (22lambda - 88) =11` `or 2lambda -8 =6` `or 2lambda -8 =6` `or lambda=7` |
|