InterviewSolution
Saved Bookmarks
| 1. |
To what series does the speciral lines of atomic hydrogen belong if its wavelength is equal to the difference between the wavenumber of the folowing two lines of the Balmer series `486.1` and `419.2 nm`? What is the waveeath of thqat line ? |
|
Answer» Given `lambda_(1) = 486.1 xx 10^(-9)m = 486.1 xx 10^(-7) cm` `lambda_(2) = 410.2 xx 10^(-9)m = 410.2 xx 10^(-7) cm` ` bar v = bar v_(2) - barv _(1)` `= (1)/(lambda_(2)) - (1)/(lambda_(1))` `= R_(H) [(1)/(2^(2)) - (1)/(n_(2)^(2))] - R_(H) [(1)/(2^(2)) - (1)/(n_(1)^(2))]` `bar v = R_(H)[1/n_(1)^(2)-1/n_(1)^(2)]`........(i) For 1 case of balance series `(1)/(lambda_(1)) = R_(H) [(1)/(2^(2)) - (1)/(n_(1)^(2))] = 109678 [(1)/(2^(2)) - (1)/(n_(1)^(2))]` or `(1)/(4186.1 xx 10^(-5)) = 109678[(1)/(2^(2)) - (1)/(n_(1)^(2))]` `:. n_(1) = 4` For II case of Balmer series `(1)/(lambda) = (1)/(410.2 xx 10^(-7)) = 10978 [(1)/(2^(2)) - (1)/(n_(2)^(2))]` `:. n_(2) = 6` THus giuven transition occurs from sixth level to four level .Also equation (i) `bar v = (1)/(lambda) = 109678 [(1)/(4^(2)) - (1)/(6^(2))]` `:. lambda = 2.63 xx 10^(-4) cm ` |
|