1.

Two bodies of masses 8kg and 32kg are placed at a distance 12m. A third body of mass 5kg is to be placed at such a point that the force acting on this body is zero. Find the position of that point.​

Answer»

EXPLANATION:

\huge\pink{\fbox{\tt{࿐αɴѕωєя࿐}}}\huge\pink{\fbox{\tt{࿐αɴѕωєя࿐}}}\huge\pink{\fbox{\tt{࿐αɴѕωєя࿐}}}

\begin{gathered}\dashrightarrow\sf\:\:(Diagonal)^2=(Length)^2+(Breadth)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=(BC)^2+(CD)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=(24\:cm)^2+(7\:cm)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=576\:cm^2+49\:cm^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=625\:cm^2\\\\\\\dashrightarrow\sf\:\:BD=\sqrt{625\:cm^2}\\\\\\\dashrightarrow\sf\:\:BD=\sqrt{25\:cm \times 25\:cm}\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf BD=25\:cm}}\qquad\bigg\lgroup\bf Diagonal\bigg\rgroup\end{gathered} ⇢(Diagonal) 2 =(Length) 2 +(Breadth) 2 ⇢(BD) 2 =(BC) 2 +(CD) 2 ⇢(BD) 2 =(24cm) 2 +(7cm) 2 ⇢(BD) 2 =576cm 2 +49cm 2 ⇢(BD) 2 =625cm 2 ⇢BD= 625cm 2   ⇢BD= 25cm×25cm  ⇢ BD=25cm     ⎩⎪⎪⎪⎧  Diagonal ⎭⎪⎪⎪⎫    ⠀\therefore\:\underline{\textsf{Hence, Length of Diagonal is C) \textbf{25 cm}}}.∴ Hence, Length of Diagonal is C) 25 cm  .



Discussion

No Comment Found