1.

two isolated plates of a capacitor has been given a charge of 6microcoulomb, the area of plates is 2 sq metre.Find approximate force of attraction between two plate​

Answer»

\large\sf\underline{ \red{\underline{Question }}}:- \:  \\  \sf Two  \: isolated \: plates \: of \: a \: capacitor \: has \: been \: given \:  \\ \sf a \: <klux>CHARGE</klux> \: of \: 6 \mu \: c \: the \: area \: of \: plates \: is \: 2sq. \: <klux>METRE</klux> \\ \sf find \: approximate \: force \: of \: attraction \: between \\ \sf two \:p lates.

\large\sf\underline{ \orange{\underline{ Answer }}}:- \:  \:  \\ \\  \: \to \red{ \boxed{ \sf \green{F = 1.048 \: Newton \: }}} \:  \\  \\ \large\sf\underline{ \green{\underline{ To Find  \:  }}}:- \: \:  \\  \to \sf \: approximate \: force \: between \: plates

\large\sf\underline{ \red{\underline{  Explanation\:  }}}:-

Given that :

  • Area between plates (A) = 2 sq. metre

  • Charge on plates \sf(Q) = 6 \mu C

\large\sf\underline{ \pink{\underline{  Solution \:   }}}:- \:

We know that ,

\to \sf \red{E = } \green{\dfrac{Q}{2 A \epsilon_0 }  \: } \\   \:  \\  \because \sf \:  F = EQ  \\  \:  \therefore \\  \\  \to \sf F = Q  \times \dfrac{Q}{2 A \epsilon_0 }  \\  \\  \to \sf F =   \dfrac{ {Q}^{2} }{2 A \epsilon_0  } \:  \\  \\   \red{\boxed{ \because \sf \green{ \epsilon_0 = 8.85} \times  {10}^{ - 12} }} \\  \boxed{ \because \sf1 \mu \: C =  {10}^{ - 6} \:  C  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \bf puting \: the \: given \: values \\

\to \sf F \:  =  { \frac{ \orange{6 \times  {10}^{ - 6} \times 6 \times  {10}^{ - 6} } }{ \red{2 \times 2 \times 8.85 \times  {10}^{ - 12} }}}  \\  \\  \to \sf F =  \frac{36 \times  {10}^{ - 12} }{ \blue{4 \times 8.85 \times  {10}^{ - 12} }}  \\  \\  \to \sf \:  F =  \frac{36 \times 100}{4 \times 858}  \\  \\  \to \sf F = \pink{  \frac{3600}{3432}  }\\  \\  \to \red{ \boxed{ \sf \green{F = 1.048 \: Newton \: }}}

REQUIRED force between them is 1.048 N



Discussion

No Comment Found

Related InterviewSolutions