1.

`underset(n to oo)lim(1)/(2)" " underset(r=+1)overset(2n)sum (r)/(sqrt(n^(2)+r^(2)))` equalsA. `1+sqrt5`B. `-1+sqrt5`C. `-1+sqrt2`D. `1+sqrt2`

Answer» Correct Answer - B
Let `l=underset(nrarroo)(lim)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)-r^(2)))`
`=underset(nrarroo)(lim)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(1+((r)/(n))^(2)))`
`=underset(nrarroo)(lim)(1)/(n)sum_(r=1)^(2n)((r)/(n))/(sqrt(1+((r)/(n))^(2)))`
Put `(r)/(n)=x,(1)/(n)=dx, underset(nrarroo)(lim)sum_(r=1)^(2n)=int_(0)^(2)`
`therefore" "l=int_(0)^(2)(x)/(sqrt(1+x^(2)))dx=[sqrt(1+x^(2))]_(0)^(2)`
`=sqrt5-1`


Discussion

No Comment Found