1.

Using the method of dimensions find the acceleration of a particle moving with a constant speed v in a circle of radius r.

Answer»

\(a \propto v-r\)

\(a = kvr\)

where

a = acceleration

v = velocity

r = radius

\(a = kv^ar^b\)  ....(1)

\([M^0LT^{-2}] = k[v]^a [r]^b\)

\([M^0LT^{-2}] = k[LT^{-1}]^a [L]^b\)

\([M^0LT^{-2}] = k[L^{a + b} T^{-a}]\)

Comparing power

\(a + b = 1\)

\(a = 2\)

\(b = 1 -2\)

\(b= -1\)

Then these value put in equation (1)

\(a = kv^2r^{-1}\)

\(a =\frac{v^2}r\)



Discussion

No Comment Found