InterviewSolution
Saved Bookmarks
| 1. |
` vec a , vec b ,a n d vec c`are three unit vectors andevery two are inclined to each other at an angel `cos^(-1)(3//5)dot`If ` vec axx vec b=p vec a+q vec b+r vec c ,w h e r ep ,q ,r`are scalars, then find thevalue of `qdot` |
|
Answer» `veca xx vecb = pveca =qvecb + rvecc` taking dot product with `veca, vecb and vecc`, we get `0 = P + 3/5 q = 3/5 r` `0 = 3/5 p+q+ 3/5 r` `[veca vecb vecc] = 3/5p + 3/5 q + r ` `Also, [veca vecb vecc] ^(2)=|{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|` `=[{:(1,3//5,3//5),(3//5, 1, 3//5),(3//5,3//5,1):}]= 44/125` solving (i), (ii) and (iii) for q, we get `5/11 [veca vecb vecc] = - 2/3 q ` ` 5/11 xx sqrt(44/125) = - 2/3 q` ` q = - 3 /sqrt55` |
|