InterviewSolution
Saved Bookmarks
| 1. |
Vectors `vecA and vecB` satisfying the vector equation `vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1`. Vectors and `vecb` are given vectosrs, areA. `vecA = ((vecaxxvecb)-veca)/(a^(2))`B. `vecB = ((vecbxx veca) + veca (a^(2) - 1))/a^(2)`C. `vecA = ((vecaxxvecb)+veca)/(a^(2))`D. `vecB = ((vecbxx veca) - veca (a^(2) - 1))/a^(2)` |
|
Answer» Correct Answer - b,c, we have `vecA.vecB =veca` `or vecA .veca + vecB.veca = veca.veca` `or 1+ vecB.veca = a^(2)` `or vecB.veca= a^(2)-1` Also `vecA xx vecB =vecb` `or veca xx (vecA xx vecB ) = veca xx vecb` ` or (veca. vecB)vecA - (veca.vecA) vecB = veca xx vecb` `or (a^(2)-1) vecA -vecB = veca xx vecb` ( using (i) and ` veca. vecA =1`) (ii) ` and vecA + vecB =a` form (ii) and (iii) , we have `vecA= ((vecaxxvecb)+veca)/a^(2)` `vecB=veca-{((vecaxxvecb)+veca)/a^(2)}` ` = ((vecbxxveca) + veca (a^(2) -1))/a^(2)` thus `vecA= ((vecaxxvecb)+veca)/a^(2)` ` and vecB= ((vecbxxveca)+veca (a^(2) -1))/a^(2)` |
|