1.

What is the auto correlation of the sequence x(n)=a^nu(n), 0

Answer»

Right choice is (d) All of the mentioned

Explanation: RXX(l)=\(\sum_{n=-\infty}^{\infty} x(n)x(n-l)\)

For l≥0, rxx(l)=\(\sum_{n=l}^{\infty} x(n)x(n-l)\)

=\(\sum_{n=l}^{\infty} a^n a^{n-l}\)

=\(a^{-l}\sum_{n=l}^{\infty} a^{2N}\)

=\(\frac{1}{1-a^2}a^l\)(l≥0)

For l<0, rxx(l)=\(\sum_{n=0}^{\infty} x(n)x(n-l)\)

=\(\sum_{n=0}^\infty a^n a^{n-l}\)

=\(a^{-l}\sum_{n=0}^{\infty} a^{2n}\)

=\(\frac{1}{1-a^2}a^{-l}\)

So, rxx(l)=\(\frac{1}{1-a^2}a^{|l|}\) (-∞



Discussion

No Comment Found

Related InterviewSolutions