1.

What is the conjugate of `(2-i)/((1-2i)^(2))`?

Answer» Given that, `z=(2-i)/((1-2i)^(2))= (2-i)/(-3-4i^(2)-4i)`
`=(2-i)/(1-4-4i)= (2-i)/(-3-4i)`
`=((2-i))/(-(3+4i))= [((2-i)(3-4i))/((3+4i)(3-4i))]`
`-({6-8i-3i+4i)/(9+16))=-(-11i+2)/(25)`
`=(-1)/(25)(-211i) rArr z=(1)/(25)-(-2+11i)`
`barz=(-1)/(25)(-211i) =(-2)/(25)-(11)/(25)i`


Discussion

No Comment Found