1.

What is the smallest positive integer `n`for which `(1+i)^(2n)=(1-i)^(2n)?`

Answer» Correct Answer - n = 2
`((1+i))/((1-i))=((1+i))/((1-i))=((1+i))/((1+i))=((1+i)^(2))/(2)=((1+i^(2)+2i))/(2)=(2i)/(2)=i`.
`therefore" "(1+i)^(2n)=(1-i)^(2n) rArr ((1+i)^(2n))/((1-i)^(2n))=1 rArr ((1+i)/(1-i))^(2n)=1 rArr i^(2n) = 1`.
Least value of 2n is 4 and so the least value of n is 2.


Discussion

No Comment Found