InterviewSolution
Saved Bookmarks
| 1. |
What is the smallest positive integer `n`for which `(1+i)^(2n)=(1-i)^(2n)?` |
|
Answer» Correct Answer - n = 2 `((1+i))/((1-i))=((1+i))/((1-i))=((1+i))/((1+i))=((1+i)^(2))/(2)=((1+i^(2)+2i))/(2)=(2i)/(2)=i`. `therefore" "(1+i)^(2n)=(1-i)^(2n) rArr ((1+i)^(2n))/((1-i)^(2n))=1 rArr ((1+i)/(1-i))^(2n)=1 rArr i^(2n) = 1`. Least value of 2n is 4 and so the least value of n is 2. |
|