1.

Which of the following matrices is both symmetric and skew symmetric?(a) A=\(\begin{bmatrix}1&0\\1&0\end{bmatrix}\)(b) A=\(\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}\)(c) A=\(\begin{bmatrix}1&0&1\\1&0&1\end{bmatrix}\)(d) A=\(\begin{bmatrix}0&0&-2\\1&0&-1\\2&0&0\end{bmatrix}\)I have been asked this question during an online interview.My question is from Symmetric and Skew Symmetric Matrices in section Matrices of Mathematics – Class 12

Answer»

Right choice is (b) A=\(\begin{BMATRIX}0&0&0\\0&0&0\\0&0&0\end{bmatrix}\)

The explanation: The MATRIX A=\(\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}\)=A’=-A’.HENCE, a null matrix is both symmetric and skew-symmetric.



Discussion

No Comment Found

Related InterviewSolutions