

InterviewSolution
1. |
Which of the following series is an arithmetic progression ? A) 2, 4, 6, 8, B) 1, 2, 4, 8, C) 4, 9, 16, 25, D) 3, 9, 12, 18, |
Answer» Correct option is A) 2, 4, 6, 8, (A) 2, 4, 6, 8, ...... \(a_2-a_1\) \(=4-2=2\) \(a_3-a_2\) \(=6-4=2\) and \(a_4-a_3\) \(=8-6=2\) \(\because\) \(a_4-a_3\) \(=a_3-a_2\) \(=a_2-a_1\) \(=2\) \(\therefore\) 2, 4, 6, 8, ...... is an arithmetic progression. (B) 1, 2, 4, 8, ........ \(a_2-a_1\) \(=2-1=1,\) \(a_3-a_2\) \(=4-2=2\) \(\because\) \(a_3-a_2\) \(\neq a_2-a_1\) \(\therefore\) 1, 2, 4, 8, ........ will not form an A.P. (C) 4, 9, 16, 25, ....... \(a_2-a_1\) \(=9-4=5,\) \(a_3-a_2\) \(=16-9=7\) \(\because\) \(a_3-a_2\) \(\neq a_2-a_1\) \(\therefore\) 4, 9, 16, 25, ....... will not form an A.P. (D) 3, 9, 12, 18, ......... \(a_2-a_1\) \(=9-3=6,\) \(a_3-a_2\) \(=12-9=3\) \(\because\) \(a_3-a_2\) \(\neq a_2-a_1\) \(\therefore\) 3, 9, 12, 18, ......... will not form an A.P. Correct option is A) 2, 4, 6, 8, |
|