

InterviewSolution
Saved Bookmarks
1. |
which one of the following sets has elements as odd positive integers (a) `S={x in R|x^3-8x^2+19x-12=0}`b) `S={x in R|x^3-9x^2+23x-15=0}`c) `S={x in R|x^3-7x^2+14x-8=0}`d) `S={x in R|x^3-12x^2+44x-48=0}`A. `S={x inR|x^(3)-8x^(2)+19x-12=0}`B. `S={x inR|x^(3)-9x^(2)+23x-15=0}`C. `S={x inR|x^(3)-7x^(2)+14x-8=0}`D. `S={x inR|x^(3)-12x^(2)+44x-48=0}` |
Answer» Correct Answer - B We take option `(a) : x^(3)-8x^(2)+19x-12=0` `implies(x-1)(x^(2)-7x+12)=0` `implies(x-1)(x-3)(x-4)=0` `impliesx=1,3,4` Thus, it is not a set of elements as odd positive integers. `(b)x^(3)-9x^(2)+23x-15=0` `implies (x-1)(x^(2)-8x+15)=0` `implies(x-1)(x-3)(x-5)=0` `implies x=1, 3, 5` Thus, S will be a set of elements as odd positive integers. |
|