1.

Which term of the A.P. 3, 8, 13,… is 248?

Answer»

Given,

A.P is 3, 8, 13,… 

Here, 

a1 = a = 3, 

a2 = 8 

Common difference, 

d = a2 – a1 

= 8 – 3 

= 5 

We know, 

an = a + (n – 1)d 

Where a is first term or a1 and d is common difference 

∴ an = 3 + (n – 1)5 

⇒ an = 3 + 5n – 5 

⇒ an = 5n – 2 

Now, 

To find which term of A.P is 248 

Put an = 248 

∴ 5n – 2 = 248 

⇒ 5n = 248 + 2 

⇒ 5n = 250 

⇒ n = \(\frac{250}{5}\)

⇒ n = 50 

Hence, 

50th term of given A.P is 248.



Discussion

No Comment Found