| 1. |
Write a program to compute product of two matrices using strassen multiplication algorithm. Here the dimensions of matrices must be a power of 2. |
|
Answer» Explanation: algorithm to multiply two matrices. This is a program to compute product of two matrices using STRASSEN Multiplication algorithm. Here the dimensions of matrices must be a power of 2. Here is the source code of the C program to multiply 2*2 matrices using Strassen’s algorithm. The C program is successfully compiled and run on a LINUX system. The program output is ALSO shown below. /* C code of two 2 by 2 matrix multiplication using Strassen's algorithm */ #include int main(){ int a[2][2], b[2][2], c[2][2], i, j; int m1, m2, m3, m4 , m5, m6, m7;
printf("Enter the 4 elements of first matrix: "); for(i = 0;i < 2; i++) for(j = 0;j < 2; j++) SCANF("%d", &a[i][j]);
printf("Enter the 4 elements of second matrix: "); for(i = 0; i < 2; i++) for(j = 0;j < 2; j++) scanf("%d", &b[i][j]);
printf("\nThe first matrix is\n"); for(i = 0; i < 2; i++){ printf("\n"); for(j = 0; j < 2; j++) printf("%d\t", a[i][j]); }
printf("\nThe second matrix is\n"); for(i = 0;i < 2; i++){ printf("\n"); for(j = 0;j < 2; j++) printf("%d\t", b[i][j]); }
m1= (a[0][0] + a[1][1]) * (b[0][0] + b[1][1]); m2= (a[1][0] + a[1][1]) * b[0][0]; m3= a[0][0] * (b[0][1] - b[1][1]); m4= a[1][1] * (b[1][0] - b[0][0]); m5= (a[0][0] + a[0][1]) * b[1][1]; m6= (a[1][0] - a[0][0]) * (b[0][0]+b[0][1]); m7= (a[0][1] - a[1][1]) * (b[1][0]+b[1][1]);
c[0][0] = m1 + m4- m5 + m7; c[0][1] = m3 + m5; c[1][0] = m2 + m4; c[1][1] = m1 - m2 + m3 + m6;
printf("\nAfter multiplication using Strassen's algorithm \n"); for(i = 0; i < 2 ; i++){ printf("\n"); for(j = 0;j < 2; j++) printf("%d\t", c[i][j]); }
return 0; } |
|