1.

Write the projection of vector (i+j+k) along the vector j.

Answer»

Let,

\(\vec{a}= (\vec{i}+\vec{j}+\vec{k})\)

\(\vec{b}=(\vec{j})\)

\(\vec{|b|}\) = \(\sqrt{0^2+1^2+0^2}\) = \(\sqrt{1}\) = 1

 \(\vec{b}=\frac{\vec{b}}{|\vec{b}|}\) = \(\frac{\vec{j}}{1}\)

∴ The projection of \((\vec{i}+\vec{j}+\vec{k})\) on \((\vec{j})\) is   \((\vec{i}+\vec{j}+\vec{k})\).\((\vec{j})\) = 1



Discussion

No Comment Found