InterviewSolution
Saved Bookmarks
| 1. |
Write the projection of vector (i+j+k) along the vector j. |
|
Answer» Let, \(\vec{a}= (\vec{i}+\vec{j}+\vec{k})\) \(\vec{b}=(\vec{j})\) \(\vec{|b|}\) = \(\sqrt{0^2+1^2+0^2}\) = \(\sqrt{1}\) = 1 \(\vec{b}=\frac{\vec{b}}{|\vec{b}|}\) = \(\frac{\vec{j}}{1}\) ∴ The projection of \((\vec{i}+\vec{j}+\vec{k})\) on \((\vec{j})\) is \((\vec{i}+\vec{j}+\vec{k})\).\((\vec{j})\) = 1 |
|