1.

`x^(2)dy+(xy+y^(2))dx=0 , y=1` यदि x = 1

Answer» `x^(2)dy+(xy+y^(2))dx=0`
`implies (dy)/(dx)+(xy+y^(2))/(x^(2))=0 " ...(1)"`
माना y = vx
`implies (dy)/(dx)=v+(xdv)/(dx)`
समीकरण (1) से,
`v+x(dv)/(dx)+(vx^(2)+v^(2)x^(2))/(x^(2))=0`
`implies x(dv)/(dx)+2v+v^(2)=0`
`implies x(dv)/(dx)=-v(v+2)`
`implies (dv)/(v(v+2))=-(dx)/(x)`
`implies int(2)/(v(v+2))dv=-int(2)/(x)dx`
`implies int((1)/(v)-(1)/(v+2))dv=-int(2)/(x)dx`
`implies logv-log(v+2)=-2logx+logc`
`implies log.(v)/(v+2)=log.(c)/(x^(2))`
`implies (v)/(v+2)=(c)/(x^(2))`
`implies (y//x)/((y)/(x)+2)=(c)/(x^(2))`
`implies (y)/(2x+y)=(c)/(x^(2))`
`implies x^(2)y=c(2x+y)`
दिया है x = 1 पर y = 1
`therefore 1 = c(2+1)`
`implies c=(1)/(3)`
अतः `x^(2)y=(1)/(3)(2x+y)`
`implies 3x^(2)y=2x+y`


Discussion

No Comment Found