1.

`(x+y)dy+(x-y)dx=0 , y=1` यदि x = 1

Answer» दिया है, `(x+y)dy+(x-y)dx=0`
`implies (dy)/(dx)=(y-x)/(x+y)" …(1)"`
दिया गया अवकल समीकरण समघातीय है।
माना y = vx
`implies (dy)/(dx)=v+x(dv)/(dx)`
implies समीकरण (2) से, `v+x(dv)/(dx)=(vx-x)/(x+vx)`
`impliesv+x(dv)/(dx)=(x(v-1))/(x(1+v))impliesv+x(dv)/(dx)=(v-1)/(1+v)`
`impliesx(dv)/(dx)=(v-1)/(1+v)-v`
`implies x(dv)/(dx)=(v-1-v-v^(2))/(1+v)`
`implies -x(dv)/(dx)=(1+v^(2))/(1+v)=((v+1))/(1+v^(2))dv=-(1)/(x)dx`
समाकलन करने पर,
`int((v+1))/(1+v^(2))dv=-int(dx)/(x)`
`impliesint(v)/(1+v^(2))dv+int(1)/(1+v^(2))dv=-int(dx)/(x)`
`implies (1)/(2)log|v^(2)+1|+tan^(-1)v+log|x|=C`
`implies (1)/(2)log((y^(2)+x^(2))/(x^(2)))+log|x|+tan^(-1)((y)/(x))=C`
`implies log((y^(2)+x^(2))/(x^(2)))+2log|x|+2tan^(-1)((y)/(x))=2C`
`implies log((y^(2)+x^(2))/(x^(2)))+logx^(2)+2tan^(-1)((y)/(x))=2C`
`implieslog.((y^(2)+x^(2))x^(2))/(x^(2))+2tan^(-1)((y)/(x))=2C`
`implies log(x^(2)+y^(2))+2tan^(-1)((y)/(x))=A" " (2C = A " रखने पर")" ....(2)"`
दिया है, `x = 1, y = 1`
`log2+(2xx(pi)/(4))=A`
`implies A=(pi)/(2)+log2`
समीकरण (2) में A का मान रखने पर,
`log(x^(2)+y^(2))+2tan^(-1)((y)/(x))=(pi)/(2)+log2`
जोकि दिए गए अवकल समीकरण का अभीष्ट हल है।


Discussion

No Comment Found