 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | यदि ` f ( x ) = {{:((sin 2x ) /(sin 3x)",", x ne0),( 2,"," x =0):} ` सिद्ध कीजिये कि फलन ` f (x) `, बिंदु ` x =0 ` पर सतत नहीं है | | 
| Answer» प्रश्नानुसार, ` f ( 0 ) = 2 ` अब ` lim _ ( x to 0 ) f ( x ) = lim _ ( x to 0 ) ( sin 2x ) /( sin 3x) = lim _ ( x to 0 ) (( sin 2x ) /( 2x ) * ( 3x ) /(sin 3x ) ) * (2)/(3) ` ` = (2)/(3)lim _ ( x to 0 ) (( sin 2x)/(2x)) * lim _ ( xto 0 ) ((3x) /(sin 3x)) ` ` = ( 2 )/(3) lim _ ( xto 0 ) (( sin 2x) /(2x)) * (1) /(lim _ ( x to 0 ) (( sin 3x)/(3x))) ` ` = (2) /(3) xx 1 xx (1)/(1) = (2) /(3) ` स्पष्टतः ` f (0) ne lim _ ( x to 0 ) f(x) ` `rArr ` फलन ` f ( x ) `, बिंदु ` x = 0 ` पर सतत नहीं है | | |