1.

यदि ` f ( x ) = {{:((sin 2x ) /(sin 3x)",", x ne0),( 2,"," x =0):} ` सिद्ध कीजिये कि फलन ` f (x) `, बिंदु ` x =0 ` पर सतत नहीं है |

Answer» प्रश्नानुसार, ` f ( 0 ) = 2 `
अब ` lim _ ( x to 0 ) f ( x ) = lim _ ( x to 0 ) ( sin 2x ) /( sin 3x) = lim _ ( x to 0 ) (( sin 2x ) /( 2x ) * ( 3x ) /(sin 3x ) ) * (2)/(3) `
` = (2)/(3)lim _ ( x to 0 ) (( sin 2x)/(2x)) * lim _ ( xto 0 ) ((3x) /(sin 3x)) `
` = ( 2 )/(3) lim _ ( xto 0 ) (( sin 2x) /(2x)) * (1) /(lim _ ( x to 0 ) (( sin 3x)/(3x))) `
` = (2) /(3) xx 1 xx (1)/(1) = (2) /(3) `
स्पष्टतः ` f (0) ne lim _ ( x to 0 ) f(x) `
`rArr ` फलन ` f ( x ) `, बिंदु ` x = 0 ` पर सतत नहीं है |


Discussion

No Comment Found

Related InterviewSolutions