1.

यदि हो इकाई सदिशों `veca " तथा" vecb ` के बीच का कोण `theta ` हो तो सिद्ध कीजिए की - ` sin (theta)/(2) = (1)/(2) |veca - vecb|`

Answer» `because |veca| = 1 "तथा " |vecb| = 1`
` therefore vec a . vecb = (1)(1) costheta = cos theta ` …(1)
` |veca - vecb|^(2) = (veca - vecb)^(2)`
` = (veca)^(2) + (vecb)^(2) - 2(hata . hatb)`
`= |veca|^(2) + |vecb|^(2) - 2cos theta ` (समीकरण (1) से )
`= 1 + 1 - 2costheta = 2 - 2 (1 - sin^(2) (theta)/(2))`
` 4sin^(2) (theta)/(2)`
` therefore 2sin (theta)/(2) = |veca - vecb|`
` rArr sin (theta)/(2) = (1)/(2) |veca - vecb|` .


Discussion

No Comment Found

Related InterviewSolutions