InterviewSolution
Saved Bookmarks
| 1. |
यदि (If) `y=(sinx)^(x)+(cosx)^(tanx)`, (find) `(dy)/(dx)` निकालें |
|
Answer» `y=(sinx)^(x)+(cosx)^(tanx)` `=u+v` जहाँ `u=(sinx)^(x) ,v=(cosx)^(tanx)` … (1) अब `u=(sinx)^(x)` `rArrlogu=xlogsinx` `rArr(1)/(u)(du)/(dx)=1*logsinx+x*cotx` `rArr(du)/(dx)=(sinx)^(x)[logsinx+xcotx]` पुनः `v=(cosx)^(tanx)` `rArrlogv=tanxlogcosx` `rArr(1)/(v)(dv)/(dx)=sec^(2)xlogcosx+tanx*(1)/(cosx)(-sinx)` `=sec^(2)xlogcosx-tan^(2)x` `rArr(dv)/(dx)=(cosx)^(tanx)[sec^(2)xlogcosx-tan^(2)x]` ... (2) अब y=u+v `therefore(dy)/(dx)=(du)/(dx)+(du)/(dx)` `=(sinx)^(x)(logsinx+xcotx)+(cosx)^(tanx)[sec^(2)xlogcosx-tan^(2)x]` |
|