1.

यदि (If) `y=x^(x)`, दिखाएँ कि (show that) `(d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0`

Answer» दिया है, `y=x^(x)`
`implies" "logy=xlogx`
x के सापेक्ष अवकलित (differentiate) करने पर हमें मिलता है,
`(1)/(y).(dy)/(dx)=1.logx+x.(1)/(x)`
`implies" "(dy)/(dx)=y(1+logx)" "...(1)`
पुन: x के सापेक्ष अवकलित (differentiate) करने पर हमें मिलता है,
`(d^(2)y)/(dx^(2))=(dy)/(dx)(1+logx)+y.(1)/(x)`
`=(dy)/(dx).(1)/(y).(dy)/(dx)+(y)/(x)" "[(1)" से"]`
`implies" "(d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2).-(y)/(x)=0`


Discussion

No Comment Found

Related InterviewSolutions