InterviewSolution
Saved Bookmarks
| 1. |
यदि `""^(n)P_(r ) = ""^(n)P_(r+1)` तथा `""^(n)C_(r) = ""^(n) C_(r-1)`, तो सिद्ध कीजिए कि - `n = 3, r = 2` |
|
Answer» दिया है `""^(n)P_(r) = ""^(n)P_(r+1)rArr (n!)/((n-r)!) = (n!)/((n-r-1)!)` `rArr (n-r) ! = (n-r-1)!` `rArr (n-r)(n-r-1) = (n-r-1)!` `rArr n - r = 1"........"` अब `""^(n)C_(r)=""^(n)C_(r-1) rArr ""^(n)C_(n-r) = ""^(n)C_(r-1)` `rArr n - r = r - 1` `rArr 2r = n+ 1"......"(ii)` समीकरण (i) व (ii) का हल करने पर , `n = 3, r = 2` |
|