InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
What is the last digit of `3^(3^(4n)) +1`, where n is a natural number?A. 2B. 7C. 8D. None of these |
|
Answer» Correct Answer - D In `3^(n)`, last digit is 3, if n=1,9 if n=2,7 if n=3 and 1 if n=4 and it is repeated after than Given expression is `3^(3^(4n))+1` Let `x=3^(3^(4n))+1=3^(8"In")+1` `rArr" "x=3^(80n).3^(n)+1` Last digit of x will be decided by `3^(n)" since "3^(80n)` has power multiple of 4. If n=1 last digit is 3+1=4 n=2 last digit is `3^(2)+1=9+1=10` So, last digit is zero. n=3 last digit is `3^(3)+1=27+1=28` last digit is 8. If n=4 last digit is `3^(4)+1=81+1=82` last digit is 2. So, there is no definite value of last digit. |
|
| 52. |
What is the coefficient of `x^(4)` in the expansion of `((1-x)/(1+x))^(2)` ?A. `-16`B. 16C. 8D. `-18` |
|
Answer» Correct Answer - B Consider `((1-x)/(1+x))^(2)=(1-x)^(2)(1+x)^(-2)` `=(1-2x+x^(2))(1+x)^(-2)` `=(1-2x+x^(2))(1-2x+3x^(2)-4x^(3)+5x^(4)-.....)` `therefore` Coefficient of `x^(4)` in `((1-x)/(1+x))^(2)=5 + 8 + 3 = 16` |
|
| 53. |
What is the middle term in the expansion of `((xsqrt(y))/(3)-(3)/(ysqrt(x)))^(12)` ?A. `C(12,7)x^(3)y^(-3)`B. `C(12,6)x^(-3)y^(3)`C. `C(12,7)x^(-3)y^(3)`D. `C(12,6)x^(3)y^(-3)` |
|
Answer» Correct Answer - D In the expansion of `((xsqrt(y))/(3)-(3)/(ysqrt(x)))^(12)`, then middle term is `(12)/(2)+1=7^(th)" term ". (r+1)_(th)" term, "` `T_(r+1)=""^(12)C_(r)[(xsqrt(y))/(3)]^(12-r)cdot(-(3)/(ysqrt(x)))^(r)` `therefore" "T_(7)=T_(6+1)=""^(12)C_(6)((xsqrt(y))/(3))^(6)(-(3)/(ysqrt(x)))^(6)` `=""^(12)C_(6)(x^(6)y^(3))/(y^(6)x^(2))=""^(12)C_(6)x^(3)y^(-3)=C(12,6)x^(3)y^(-3)` |
|
| 54. |
The coefficient of `x^3` in the expansion of `(3-2x)/((1+3x)^3)` isA. `-272`B. `-540`C. `-870`D. `-918` |
|
Answer» Correct Answer - D `((3-2x))/((1+3x)^(3))=(3-2x)(1+3x)^(-3)` `=(3-2x)(1-9x+((-3)(-4))/(2!).9x^(2)+((-3)(-4)(-5))/(3!).27 x^(3)+....)` `["Expanding"(1+3x)^(-3)]` `=(3-2x)(1-9x+54x^(2)-270x^(3)+…..)` `therefore" Coefficient of "x^(3)=-270xx3-2xx54` `=-810-108=-918` |
|
| 55. |
What is the coefficient of `x^(5)` in the expansion `(1-2x+3x^(2)-4x^(3)+……oo)^(-5)` ?A. `(10!)//(5!)^(2)`B. `5^(-5)`C. `5^(5)`D. `10!//{6!)(4!)}` |
|
Answer» Correct Answer - A `1-2x+3x^(2)-4x^(3)+…..` `=(1+x)^(2), so (1-2x+3x^(2)-4x^(3)+….oo)^(-5)` `=((1+x^(-2))=(1+x)^(10) rArr T_(r+1)=""^(10)C_(r)x^®` Putting r=5, coefficient of `x^(5)=""^(10)C_(5)=(10!)/(5!5!)=(10!)/((5!)^(2))` |
|
| 56. |
What are the last two digits of the number `9^(200)`A. 19B. 21C. 41D. 1 |
|
Answer» Correct Answer - D Using binomial theorem `9^(200)=(1+8)^(200)` `=1+8.200+(200xx199)/(2!)xx8^(2)+…..` `=1+1600+1273600+….` From above, it is clear that the last two digits of the number `9^(200)` are 0.1 |
|
| 57. |
For any positive integer n, if `4^(n)-3n` is divided by 9, then what is the remainder ?A. 8B. 6C. 4D. 1 |
|
Answer» Correct Answer - D Using binomial theorem. `4^(n)-3n=(1+3)^(n)-3n` `=1+n.3+(n(n-1))/(2!)3^(2)+…-3` `=1+(n(n+1))/(2!).3^(2)+(n(n-1)(n-2))/(3!).3^(3)+....` `rArr" "4^(n)-3n=9{(n(n-1))/(2!)+....}+1` Thus, when `4^(n)-3n` is divided by 9, the remainder is 1. |
|