Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Prove the following trigonometric identities:cotθ - tanθ =\(\frac{2cos^2θ-1}{sinθ.cosθ}\)

Answer»

L.H.Scotθ - tanθ =\(\frac{cosθ}{sinθ}-\frac{sinθ}{cosθ}\)

=\(\frac{cos^2θ-sin^2θ}{sinθ.cosθ}\)

=\(\frac{cos^2θ-(1-cos^2θ)}{sinθ.cosθ}\)

=\(\frac{cos^2θ-1+cos^2θ)}{sinθ.cosθ}\)

= \(\frac{2cos^2θ-1}{sinθ.cosθ}\)

= R.H.S

Hence Proved.

2.

If sin 3θ = cos(θ – 6°) here 3θ and (θ – 6°) are acute angles, then find the value of θ.

Answer»

Given :

sin 3θ = cos(θ – 6°)

or cos(90° – 3θ) = cos(θ – 6°) [∵ cos(90° – θ) = sin θ]

or 90° – 3θ = θ – 6°

or 3θ + θ = 90° + 6°

or 4θ = 96°

or θ = 96/4 = 24°

3.

Verify the followingwith the help of identities.(i) ((1 + cotθ + tanθ)(sinθ - cosθ))/(sec3θ - cosec3θ) = sin2θ cos2θ(ii) (sinθ + cosθ)/(sinθ - cosθ) + (sinθ - cosθ)/(sinθ + cosθ) = 2/(1 - 2cos2θ) = 2/(2cos2θ - 1)

Answer»

(i) LHS = ((1 + cotθ + tanθ)(sinθ - cosθ))/(sec3θ - cosec3θ)

= sin2θ cos2θ

= R.H.S.

(ii) LHS = (sinθ + cosθ)/(sinθ - cosθ) + (sinθ - cosθ)/(sinθ + cosθ)

= 2/(1 - 2cos2θ)

= R.H.S.

Again by equation (i)

= 2/(2cos2θ - 1)

= R.H.S.

4.

In the adjoining figure, ∠B = 90°, ∠BAC = θ°, BC = CD = 4 cm and AD=10 cm. Find (i) sinθ and (ii) cosθ.

Answer»

Draw a triangle using given instructions:

From figure: Δ ABC and Δ ABD are right angled triangles

where AD = 10 cm BC = CD = 4 cm

BD = BC + CD = 8 cm

By Pythagoras theorem:

AD2= BD2+ AB2

(10)2= (8)2+ AB2

100 = 64 + AB2

AB2= 36 = (6)2

or AB = 6 cm

Again,

AC2= BC2+ AB2

AC2= (4)2+ (6)2

AC2= 16 + 36 = 52

or AC = √52 = 2√13 cm

(i) Find sin θ

sin θ = BC/AC = 4/2√13 = 2√13/13

(ii) Find cos θ

cosθ = AB/AC = 6/2√13 = 3/√13 = 3√13/13